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ON GENERATING POLYNOMIALS WHICH ARE ORTHOGONAL 
OVER SEVERAL INTERVALS 

BERND FISCHER AND GENE H. GOLUB 

ABSTRACT. We consider the problem of generating the recursion coefficients of 
orthogonal polynomials for a given weight function. The weight function is 
assumed to be the weighted sum of weight functions, each supported on its own 
interval. Some of these intervals may coincide, overlap or are contiguous. We 
discuss three algorithms. Two of them are based on modified moments, whereas 
the other is based on an explicit expression for the desired coefficients. Several 
examples, illustrating the numerical performance of the various methods, are 
presented. 

1. INTRODUCTION 

Let [1, uj], j = 1, 2, ... N 11 < 12 < < IN be N not necessarily 
disjoint real intervals. Furthermore, let coi be a nonnegative weight function 
on [I', uj], j = 1, 2, ..., N. With every Cow there is associated a system of 

orthogonal polynomials {P(j)}, where p(j) has exact degree k and 

(1.1) fU f( >0X)p(')(x)a )) >0 ifk=m, 
JPk (X)Pm (X)Wcj (x)dx =0 ifk0$m. 

They satisfy, as is well known, a three-term recurrence relation 

2 XPk) (x) = b(j)pk(), (x) + ak ) p ) (x) + )pk ) l(x), kk =0, , 1, 

p- I(x) ( -0, pOJ) (X)= 1, 

where aJ, Ck are real numbers and bkJ) * c(j) > 0. We set 

1:=1l and u:= max u. 
1I<j<N J 

and consider the nonnegative weight function co(x) defined on the interval 
[I, u] by 

N 
(1.3) co)(x) := ej U. I (x) c (x) (> O), 
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where 

E {-1, 1} and ' U.l(X):={0 i [J,JI, 

The inner product associated with co(x) will be denoted by (, ), i.e., 
u 

(f, g) ff(x)g(x)w(x) dx 
(1.4) N u 

= E f (x)g(x)wc,j(x) dx. 
j=1 j 

Clearly, there exists a set of polynomials { y/k} that are orthogonal with respect 
to this inner product. In this paper we investigate the problem of numerically 
generating the recurrence coefficients in the relation 

X /k (X) = fik k+ (X) + ak k (X) + Yk k I (X), k = Q, I. , 

V-1. (X') - , vo(x)= 

under the assumption that the coefficients b) ak(j . i = I 1 2. N for 
whatever value of k is required, and the zero-order moments 

(1.6) f~~W Ui (1.6) wj : J'c(x) dx, J I , 2,... ., N), 

are given. 
Problems of this type anrse, for example, in connection with the numerical 

solution of large systems of linear equations (sex, e.g., Saad [171), in theoret- 
ical chemistry (see, e.g., Wheeler [21.1), and of course in the determination of 
Gaussian quadrature formulae. 

We will discuss two classical approaches for generating the recursion coeffi- 
cients. The first one is based on the fact that the desired coefficients are given 
by 

ak (XY'k 'Yk) k O 

(1.7) (kIV 

=k - (Vk Vk) k =1 2 

=k 
k- 

'('k-1 Vk-i)' kl2. , 
where the 'k (> 0) are arbitrary. The resulting procedure, alterating re- 
cursively between ( 1.7) and ( 1.5), is called the Stieltjes procedure [Stieltjesj (for 
historical remarks, see Gautschi [3, 41). The Stieltjes procedure will be discussed 
in ?3.1. 

Our second approach involves the so-called modified moments 

(1.8) vk := (qk q1=f q(x)w(x) d-x, k- = Q . . 

where {qk} is a given sitable set of polynomials with degqk = k . Two algo- 
rithms using the modified mom-ents will be described in ?3.2. They are gener- 
alizations of one derived by Chebyshev in the case of ordinary moments, i.e., 
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qk(x) = x k, and are therefore called modified Chebyshev algorithms [modCheb] 
(for historical remarks, see Gautschi [3, 4]). Both algorithms, basically, ob- 
tain the desired recursion coefficients in terms of the Cholesky factor R in the 
Cholesky decomposition (see, e.g., Golub and Van Loan [12, ?4.2.3]) 

(1.9) M=RRT 

of the associated Gram matrix M = [(qi, qj)]. One method [modCheb- 
Cholesky] computes first the Cholesky decomposition (1.9) and then the co- 
efficients 6k' ak, Yk, whereas the other scheme [modChebUpdate] alternates 
recursively between updating R and computing '6k ak Yk We conclude ?3 
with a simple proof of a determinantal expression, in terms of the Gram matrix 
M, for the desired coefficients. 

All three algorithms have in common the need to compute the inner product 
( , ) fast and accurately. We will discuss a method for this purpose in ?2. In 
?3.2 we will see that this method, in particular, leads to an attractive algorithm 
for computing the modified moments (1.8). Finally, a number of examples 
illustrating the numerical performance of the various methods are given in ?4. 

2. EVALUATION OF THE INNER PRODUCT 

The success of the Stieltjes procedure, as well as the modified Chebyshev 
algorithms, depends in part on the ability to compute the inner product (, ) 
fast and accurately. In this section we show how to evaluate (p, 1), say for a 
polynomial of degree < 2n, under the given circumstances. 

The computation of (p, 1) can be performed effectively using the Gauss 
quadrature rule corresponding to the weight function cw,. In view of (1.4), we 
have to generate the rules 

(2.1) 1 p(x)Cwj(x)dx= E(v(l )2p(,,i 1= ... , N. 
i=o 

We first recall some basic facts on Gauss quadrature. We associate with the 
weight-function cj the tridiagonal matrix (compare (1.2)) 

C' a(J)b() b'i 
c(i) 

(2.2) T . . 

cni an)1 bi) 1 
I (1) (~~U U ) 

Note that p(i) is, up to the factor fInj_(-b(j)), the characteristic polynomial 
of T($) . Hence, as is well known, the nodes ,2ii) of (2.1) are the eigenvalues of 
T(j) . If T(J) is not symmetric, it can be symmetrized by a diagonal similarity n na 
transformation D(j) : diag(d(j), d(j d.. , where the diagonal elements 
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d(J) are given by 

d(j)l - d(J)c b(), k= O, 1, ..., n -1. k+1 -k k+ k 

Here, d(J) (# 0) is arbitrary. Thus, 

(2.3) a~~~~~~~~~1~U Uw n2 - bo' ba(J a() U)~ ~ ~~~~gX a(i) 
(2.3) Ji' D (X)-T iD(X . * 

bn-2 an-b1 bn- 

< g~~~~~n- 1 an 

whekre b(-) k k+ k = O, 1, ...,n - 1. We refer to jJ() as the (nth) 

Jacobi matrix of co; . The polynomials p(J) corresponding to 4) are related 

to p(J) by 'U) = P-j)l * Hence, if we choose the free parameter doJ) to be 

equal to VU, the resulting polynomials fij) are orthonormal with respect to 

co. It is well known (see, e.g., Wilf [22, Chapter 2]) that the weight v(j) in (2. 1) 

is the first component of the normalized eigenvector v() of J,) corresponding 
to 41), 

U) W W v(j) (j) T(j ) 
(2.4) i =A i1i , (v )v = 1, i =O, 1, ..., n. n i I 

~~~~~() (j 
In principle, we could compute l), v(i) using one of the standard methods 
for calculating eigenvalues and eigenvectors (see, e.g., Golub and Welsch [11]). 
Fortunately, we do not need to know them explicitly. Since J() is Hermitian, n 

there exists a unitary matrix UWj) with n 

(2.5) ( U (UnJ))TJ,i)UnJ) = diag(AO4, )I) , . .,)41)) (= X;nJ) 

where each column v ( of U(j) is a normalized eigenvector of J() . Therefore, n n 
we have by (2.5), (2.1), and (1.4), 

N N 
Z (j)e T (1() )e S V(he T , U)p(~i U) (j))Te ev0 el P( = n j0 e n U P(n )(Un ) el 

j=1 j=1 

N n U) () 2pU) (2.6) = E 2jvo V (i) 
j=1 i=O 

N u( 
= ?Ej| p (x) clj(x) dx (p,) 

j=l 

where e =(1 0, ...,0) denotes the first unit vector. The "method" (2.6) will 
be frequently used in the following algorithms. It is not surprising, as we will 
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see in the next sections, that the calculation of (p, 1) is even more effective, if 
p itself fulfills a certain recurrence relation. 

3. ALGORITHMS 

In the following ??3.1, 3.2 we present a detailed description of the Stieltjes 
procedure and the modified Chebyshev algorithms. 

The procedures compute a system of orthogonal polynomials { tgk }k for 
the given nonnegative weight function (compare (1.3)) 

N 
(3.1) co (x) :=e U. ](x)coj(x). 

1=1I 
More precisely, the algorithms determine the coefficients in the three-term re- 
currence relation 

X /k(X) = fik vk+I(X) + akc/kyk(X) + Yk/kI1(X), 

(3.2) k= 0 1, ..., n - I 

V/1 (X)-?_ , V/0(x)_1. 

We remark that the system {I yk,}k= has all of the properties of polynomi- 
als orthogonal on one interval, provided we consider Y1k orthogonal on [1, u] 
rather than on U. =[lj, uj]. For example, the polynomials v'k have all roots 

in [1, u], but not necessarily in UN1. [ly uj] (see Example 4.5). 
However, we have not yet specified a condition that will uniquely determine 

the orthogonal polynomials {I k}k=O . In order to make the computational effort 
of the various methods comparable, we will devise algorithms that generate the 
system of orthonormal polynomials {@I ^}-=0 with respect to co. Here we have 
by (1.4) and (1.6), 

Vk (X)Yk I k+ (X) + aXk V'k (X) + Yk =/k-I (X) 

k=0, 1, . , n- 1 
(3.3) -N -1/2 

_1(X) - O, yi0(X) = 0= e Io 
Vj=l 

Observe that the corresponding Jacobi matrix is symmetric, and therefore we 
have 

(3.4) (Vn' @n) (@n1' @n-1) = = (Y/o @J) (= 1) 

and that Y1k is related to Y1k by 

(3.5) Y/'k(X) = ('/k 1/2k) V/k (X). 

3.1. Stieltjes procedure. An explicit expression for the coefficients of { nlJ}k=o 

is easily deduced from (1.7) and (3.5). For convenience we set '3k = 1, i.e., 1k 
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is a monc polynomial, and obtain 
(XYIk,~ Wk) 

ak_ Uk= (Xfk fk k-O, I, .-. fn-1, 

(3.6) 1==(( ) /2 k l2.. 
(3.6) Yk 4 ~(( k 11 3k) ' k = 1, :2, . n. . 

In order to evaluate the inner products in (3.6) we recursively combine (3.2) 
and (2.6). Therefore, let 

zki+] = * (J ))e1 = (Jn) - qkI)k(J~ )el - Y V W-l(Jn" )e1 

=(PJt) _ aIZU) )- U) 

Then 
N 

(Vk+P lWk+1) = Ze1 v eY 4 k(J(i)Tt, l(Jn )e1 
1=1 
N 

(j) UI) T (I) 
= 5eJV6 (zk+l) Zk+ 

j=I 

Altogether, we arrive at: 

Stieltjes. Given a set of weight functions o and the associated Jacobi matrices 

J(j) by (2.3) and the moments (4) by (1.6) j=1,2,...,N ,this algorithm 
computes the recurrence coefficients of the polynomials - ,k = 1,2, . n , 
orthonormal with respect to w. 

Initialize. Set z :=el j = II 2.. N. 
* compute &o (-. ao) by (3.6) and (2.6): 

* compute 41) := yI1(J,j)3e1 by (3.2) with f = 1:* 

z0)= 323 - aI) (Z 
j )2.***N 

cmpute k (- ~ ak) and 7k by (1.7), (3.6), and (12.6): 
= t Y- N ) z j)Tzj/) Tj) U') If U)(z/1)Tz/1 

k zy @)8N (j) jT() EN- t ) )A. 

* compute z)= Vk I( J')e1 by (3.2) with f 

UI _() J)j ) 
zi VI( aOI Z( Y4 j -=1 2 j . * N 

* compute yk ( ak) byk (3.6): 

Y kk = II 



ORTHOGONAL POLYNOMIALS 717 

if k = n - I then 

N 
V(j)(Z(j))TZ(j) /2 

7n N ei(j)(ZU) l )TZn-j1 

End. 

Remarks. I. The algorithm requires Ne((n + 1)2) flops plus n square root 
computations. 

2. The number of recursion coefficients that can be calculated is bounded by 
the dimension of the Jacobi matrices. In order to compute more coefficients, 
one has to restart the computation of z(j) with appropriate Jacobi matrices. 

3. The last n - k elements of z(i) are zero. This can be used for designing 
a more efficient algorithm. 

3.2. Modified Chebyshev algorithm. In this section we present two algorithms 
involving the modified moments 

u 

(3.7) vk =(qk, 1)= jqk(x)co(x)dx, k=, 1,..., 2n. 

Both algorithms differ from the corresponding algorithm for a single interval, 
i.e., N = 1, only in the computation of Ivk. Therefore, if the vk are known 
analytically, the algorithms for a single and several intervals coincide, i.e., have 
the same complexity. 

However, in general we have to compute the modified moments. Here, we 
arrive at an efficient algorithm, if we assume that the system of polynomials 
{qk}kk=O also satisfies a three-term recurrence relation: 

xqk(x) = bkqk I (X) + akqk(X) + Ckqk-1 (X), 

(3.8) k=O, 1, ..., 2n-1, 

q_, (X)-0, qo(x)--1. 

Using the method (2.6) once more, we obtain: 

Modmoment (qn) . Given a set of weight functions co); and the associated Ja- 
cobi matrices J(J) by (2.3) and the moments (4') by (1.6), j = 1, 2,..., N, 
and the system of polynomials {ql}l. by (3.8), this algorithm computes the 
modified moments vk, k =0 , 1,... 2n, of cl relative to {ql}l2. 

(U) e (I) - ,c Initialize. Set zo :=e1, z()0, j=1,2,...,N, c :=0. 
* compute vo by (2.6): 

N N 

VO=E 0 1 = E A 

j=l j=l 
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Iterate. For k = 1 2, ... , 2n do 

* compute Zk') qk(J(j))e1 by (3.8): 

(j) 1 (j)W 
ZkX = V(n 

- ak- II)Zk- ICk- IZk-2) j=1, 2, ... N. 

* compute vk by (2.6): 

N 
- ~ (j) T (j) 

Vk =AE6I1'0 el Zk 
j=l 

End. 

Remarks. 1. The algorithm requires N9((n + 1)2) flops. 
2. The number of modified moments that can be calculated is bounded by the 

dimension of the Jacobi matrices. In order to compute more modified moments, 
one has to restart the computation of z() with appropriate Jacobi matrices. 

3. It is easy to see that the algorithm does not require symmetric Jacobi 
matrices J>() . Instead, one can also use Tn) given by (2.2). 

4. The last n - k elements of zf) are zero. This can be used for designing 
a more efficient algorithm. 

5. In order to start the algorithm, one has to choose a set of polynomials 
{q}fl= . An obvious choice is qk E {1,2,..., N}. Here (3.7) 
reduces to 

Vk= E | Pk U 
(X)oj(X) dx. 

I#1 

However, we only recommend this choice for [li, Ui] [1, u]. Otherwise, pk 

would in general produce extremely large Ivkl , owing to the fact that p ') has 
all its zeros in [li, Ui]. 

We now give a short derivation of the three-term relationship of Y'k in terms 
of the Gram matrix associated with q1 and the inner product ( , ) (compare 
Kent [14, Chapter 2]). The Fourier expansion of q1 in terms of Y'k reads (recall 
(@k,/k) = l) 

l l 

(3.9) ql(x) = E 
rlkk(x) 

= (q1, ' k)k(X) = 0, 1,... , n, 
k=O k=O 

or vice versa, 

k 

(3.10) 0/k (X) = E Skmqm (x) X k = 0 1 ... . n . 
m=O 

The above equations define the nonsingular and lower triangular matrices R 

[rk]n k=O = [(q1, @k)]n k=O and S := [Skm]k m=On with R = . Moreover, we 
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deduce from (3.9) and (3.10) 

(3.11) rlk =(q, 'k) q ( ESkmqm) E Skm(q qm). 

Now, consider the associated Gram matrix M = [(q1, qm)]n m=O The system 
of equations (3.1 1) is equivalent to 

(3.12) RT =SM, or M =RR T or M-1 =5 S. 
Therefore, R is the Cholesky factor of M and S is the inverse Cholesky factor 
of M. 

Substituting (3.10) into (3.3) (resp. (3.9) into (3.8)) and comparing the coef- 
ficients of qk+l and qk (resp. V'k+ and k)' we obtain 

~k1 = b Skk b rk+l,k+1 k 0 
Yk+1 k5 k - ,,n 

sk+l,k+l rkk 

(3.13) ak= ak+ bk- -b Sk+1k 
Skk Sk+1,k+1 

=a k-b k,l kk-1 I b 'k+i,k k = O, 1,.., n-1. 
=akbkIrk-lk-l 

k 
rkk 

Thus the desired coefficients Yk, a'k can be obtained from (3.13) in view of 
(3.12) by an inverse Cholesky decomposition of M-1 (resp. Cholesky decom- 
position of M), where only the diagonal and subdiagonal elements of S (resp. 
R) are involved. 

3.2.1. Fast Cholesky decomposition. The derivation in the last paragraph leads 
directly to the following basic algorithm (compare Gautschi [2, ?4]): 

* build up the Gram matrix M by applying the recursion (3.8); 
* compute the Cholesky decomposition M = RRT (resp. M-1 = T5S); 
* compute Yk' ak by (3.13). 

Since the Cholesky decomposition of an (n + 1) x (n + 1) matrix takes in 
general 9((n + 1)3) arithmetic operations, this algorithm does not compare 
favorably with the Stieltjes procedure in terms of speed. 

One way to overcome this bottleneck is a clever choice of the system of 
polynomials {qk} which defines the modified moments vk. Let 

(3.14) Tk(x) := cos(karccos(x)) 

denote the kth Chebyshev polynomial of the first kind. It is well known that 

(3.15) T (x)Tm(x) = :(Til-m + Tl+m) 

Hence, if we set qk - Tk, the associated Gram matrix reduces to (compare 
Branders [1, ?6.4]) 

(3.16) M = [(T1, Tm)] = m[(Tli mj + Ti+m) 1)] 
* 

= r> . 
,a~~v .1 (A 
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where 8' is Toeplitz and * is Hankel. This special structure of M allows the 
construction of a fast, i.e., 9((n + 1)2) or less, algorithm for the Cholesky de- 
composition (see, e.g., Gohberg, Kailath, and Koltracht [10], Heinig, Jankowski, 
and Rost [13], Lev-Ari and Kailath [15]). 

The fast algorithm we used for our computations is based on the following 
(general) observation. Let M be a symmetric and positive definite matrix, e.g., 
M is a Gram matrix. Notice that the Cholesky decomposition M = RRT is 
nested, i.e., 

(3.17) Mk=RkRk, k=0, 1,..., n, 

where Mk = =k [rrp]i =r ) denotes the kth leading principal [r1] (epRk = fr.0 leain prncpa 
submatrix of M (resp. R). Since the inversion of a lower triangular matrix 
is also nested, we have from (3.17) that the inverse Cholesky decomposition 
M- I = (R- )T R- = STS is "semi-nested", i.e., 

(3.18) M T=S[Sk 

Here M,7I = [u(k)Ik0 is the inverse of Mk and Sk = [si j]ik j=o denotes 
the kth leading principal submatrix of S. Assume we have already computed 
Sk1 ; then we obtain Sk by appending one row Sk := (Sko9 Skl, ... , Skk) and 
one column (0, ... , 0, Skk)T to Ski . In view of (3.18), the new elements Ski 

are uniquely determined by Sk3Skk = U(k), that is 

(3.19) Si= U(k) U( j = 0, 1,9 ...,9 k. 

T. Hence, Sk is up to a factor the last column of MA7' . Therefore, we obtain the 
inverse Cholesky factor 

u(7 (0 

(3.20) S uoi/ Ul Ull/ I 

(nUO)l U() (n)/lUn" Un)/ /UTn_) u/ u~ n 
...) 

by solving the linear systems 

(3.21) MkU=)r k = 0, 1, , n, 

where u4k) = (u 4)k, U (k) . (k) U T 
k 0,UkI,k Uk,k; 

Again, the solution of each linear system (3.21) requires in general 
&((k + 1)3) arithmetic operations. However, if M is Toeplitz + Hankel, there 
exist &((n + 1)2) algorithms for computing (3.20). They are based on the fact 
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that the solution of two adjoining sections Mkl and Mk are recursively con- 
nected. For details we refer to Heinig, Jankowski, and Rost [ 13, pp. 671-674].1 

Observe, that we only need to compute the first 2n + 1 modified moments, 
in order to build up the Gram matrix M = I[v + Vl+m*] Once we have 
computed the modified moments and the inverse Cholesky decomposition the 
desired coefficients are given by (3.13): 

ModChebCholesky. Given a set of weight functions Cj and the associated Ja- 
cobi matrices J(i) by (2.3) and the moments i4') by (1.6), j = 1, 2, ..., N, 
this algorithm computes the recurrence coefficients of the polynomials @k 
k = 1, 2, ..., n, orthonormal with respect to co. 

Initialize. Set b-1 = s0, -1 = 0. 

* compute the modified moments v, relative to T1, I1 = 0, 1, ..., 2n, 
by Modmoment(T7). 

* compute the inverse Cholesky factor S = [sj]nI j=0 by (3.20) and (3.21). 
Iterate. For k = 0, 1, ...,n-1 do 

* compute ak 'k+i by (3.13): 

ak= ak+ bk-I -b k + 
Sk, k sk+l,k+l 

Yk+1 
Sk k+l,sk+l 

End. 

Remarks. 1. The algorithm requires N9((n + 1)2) flops plus n square root 
computations. 

2. We only need the diagonal and subdiagonal elements of S for the com- 
putation of the recursion coefficients. However, the recursion formulae for the 
solutions of (3.21) involve (unfortunately) the whole vector u(k). 

We conclude this subsection with a more theoretical result. Let 

M = [m ij7,n = [(qi qj)]n,1=0 

denote once again the Gram matrix associated with {q1 }, and let Mk be the kth 
leading principal submatrix of M. Furthermore let Dk := det(Mk) designate 
the kth principal minor of M, while 

( n00 moi ... MO,k-2 Mok 

(3.22) Dk :=det l . . m k 

Mk1,0 M k-1, 
i mk-k ,k-2 mk-l ,k 

Equations (5.6) and (5.8) in [13] are misprinted: The formulae for 2i2m should read 8i2m = 

(f2m 
+ I 

)TxM+I - Cos X+In and ?2m = A,,,+, /am- Am/am-, , respectively. 
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is obtained by deleting the last row and (k - 1)st column of Dk. By apply- 
ing Cramer's rule to (3.21), we easily deduce from (3.19) and (3.13), with the 
convention D_ I = 1, Do = 0, that 

Dk Dkb 
axk= ak bk-1D + k D 

(3.23) Dk-lDk+l k = 1 -1. 

Yk+l bk Dk 

k~~~~~~~ 
For the special case of ordinary moments qk(x) x ,i.e., bk= 1, ak= Ck= 
0, we recover the well-known relationships 

Dk Dk+l 
ak =D +D 

(3.24) Dk-D 
k k =O, 1, ...,n-1. 

Yk+1 Dk 

In other words, the computation of a'k, 7k+' using the equation (3.23), is 
nothing but an (expensive) implementation of a modified Chebyshev algorithm. 

However, since the condition number of M depends in part on the poly- 
nomial system {qj}, a clever choice of this system will improve a test, based 
on (3.24), for the validation of Gaussian quadrature formulae, proposed by 
Gautschi [5, pp. 214-215]. 

3.2.2. Updating the mixed moment matrix. The next (fast) algorithm computes 
the desired coefficients in terms of the Cholesky factor R, which is essentially 
a "mixed moment" matrix (compare (3.9)) 

(3.25) R = [rlk] = [(ql 9 'k)I 

Instead of explicitly computing the Cholesky decomposition, we update R con- 
tinually as the process unfolds (compare Gautschi [8, ?5.4], Sack and Donovan 
[18], Wheeler [20]). The key equation is easily obtained from the two recurrence 
relations (3.3) and (3.8): 

1 
r,k = (q1, @k) = --((xql, Wk-1) k-&lrl,k-- Yk-1rl,k-2) 

(3.26) 1 
-=z-(blrl+l k-I + (al- ak-l)rl,k-1 +c1r1-1 ,k-1 - Yk-lrl,k-2) 

This equation combined with (3.13) almost furnishes the algorithm. Since Yk 
is defined in terms of rkk, we slightly have to change (3.26) for 1 = k and 
finally obtain: 

ModChebUpdate (qn). Given a set of weight functions co; and the associated 
Jacobi matrices J(j) by (2.3), the moments V( by (1.6), j = 1, 2, ..., N, 
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and the system of polynomials {q,}I2n by (3.8), this algorithm computes the 
recurrence coefficients of the polynomials @k, k = 1, 2, ..., n, orthononnal 
with respect to co. 

Initialize. Set O = O and r 1 =0?, =1,... ,2n-1. 

* compute the modified moments v1 relative to q*, 1 = 0, 1, ..., 2n, 
by Modmoment(q,). 

* compute ^ by (3.3): 

) - 1/2 

vo E Ajo' 
@ j=( 

* compute r1o by (3.25): 

-rlo = (ql, 1/)=yoJ 0,., 2n - 1. 

* compute ao by (3.13): 

r10 
=o ao + bo- 

Iterate. For k= 1, 2, ..., n do 

* compute rkk by (3.26) and (3.13): 

-k 
( rkl [bkrk+l, k- k + ( k-I)rk,k-I 

1/2 

+Ckrk-l,k-I -yYk-rk,k-2])1 

* compute Yk by (3.13): 

Yk bk-1 
rk-i ,k-1 

if k<n thenfor l=k+1,k+2, ..., 2n -k do 

* compute rlk by (3.26): 

Ik k--(blrl+l, k-I + (a/k-IXk_1)rl,k-I + c1r1-1 ,k-1 y-Yk-lrl,k-2). 

* compute ak by (3.13): 

ak =a k-bk1 k- + bk +I k k k1 rk,-i? 
k-1,k-1 kk 

End. 
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Remarks. 1. The algorithm requires N6'((n + 1)2) flops plus n square root 
computations. 

2. It is well known (see, e.g., Gautschi [9]), that the choice of the system {ql} 
affects the condition of the nonlinear map from the modified moments to the 
recursion coefficients. 

4. EXAMPLES 

The purpose of this section is to illustrate the numerical performance of the 
three algorithms. All computations were carried out on a SUN 3/50 in double 
precision (approx. 15 significant decimal places). 

As we will see, because of roundoff errors, the algorithms do not always 
produce the same numbers. How do we decide which numbers are the right 
ones? The most obvious test-using the associated Gauss quadrature rule for 
checking the orthonormality of the computed polynomials-is not without dif- 
ficulties (compare Gautschi [5]). Therefore, we transcribed one algorithm also 
into MATHEMATICA and used high-precision arithmetic. 

In all examples we have computed the orthonormal polynomials, more pre- 
cisely the three-term recurrence coefficients, up to degree 50. For every al- 
gorithm we have compared the FORTRAN double-precision results with the 
MATHEMATICA results obtained by using 100 significant digits. In the corre- 
sponding tables we have listed the maximum polynomial degree for which the 
relative deviation of these two results is less than 10-14. We only consider the 
case of two intervals, since the extension to more intervals does not produce 
any additional difficulties. 

Example 4.1. Let 

co, (X) := 211, u11(X) X 02(X) :=2,u2() 

and 

(4.1) co(x) := co1 (x) + co2(x). 

The orthogonal polynomials p(l), p( with respect to co,, c02 are the suit- 
able translated Legendre polynomials. The modified moments are based on the 
Legendre polynomial Ln and on the Chebyshev polynomial of the first kind Tn 
with respect to the whole interval [I, u] = [-1, 1]. 

The Stieltjes algorithm works extremely well in all cases; cf. Table 4.1. So do 
the modified Chebyshev algorithms, as long as the two intervals have at least one 
point in common. If there is a gap between the intervals, the latter algorithms 
become severely unstable, compare also Gautschi [4, Example 4.7]. As suggested 
by Gautschi [8, Example 5.5], one might use in these cases modified moments 
defined by orthogonal polynomials relative to a weight function which has the 
same support as co. Therefore, we introduce the following weight functions, 
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TABLE 4.1 

Performance of the Stieltjes algorithm and the modified 
Chebyshev algorithms for co given by (4. 1) 

modCheb 
11 Ul 12 u2 St. Ch. U.(Ln) U.(Tn) 

-1.0 -0.1 0.2 1.0 >50 27 27 31 
-1.0 -0.4 0.6 1.0 >50 8 7 7 
-1.0 -0.8 0.9 1.0 >50 4 4 4 
-1.0 0.8 0.9 1.0 >50 46 38 44 
-1.0 -0.3 -0.3 1.0 >50 >50 >50 >50 
-1.0 -0.3 -0.5 1.0 >50 >50 >50 >50 

-1.0 0.5 -0.7 1.0 >50 >50 >50 >50 
-1.0 1.0 0.8 0.9 >50 >50 >50 >50 

-1.0 1.0 -0.7 0.5 >50 >50 >50 >50 
-1.0 1.0 -1.0 0.8 J >50 >50 >50 >50 
-1.0 1.0 -1.0 

08 
>50 >50 >50 >50 

-1.0 1.0 -1.0 1.0 J>50 >50 >50 >50 

for l1 < u1 <12 < U2, 

(4.2) 

co (x) = {v(l- x)([ - X)(]2 - X) fU [12, u2], 
O ... otherwise, 
I' Il~~~12 XI for X'E[11,u1U[II 12,)U2], 

co, (x) = { /(1 - X)(U - x)(12 - x)(u - X) 

0 otherwise. 

The weight functions coul and co12 may be viewed as generalizations onto two 
intervals of the ordinary Chebyshev weight function. The associated orthogo- 
nal polynomials pnu pn2 were studied by Peherstorfer [16]. In particular, he 
derived a recurrence relation for the three-term recurrence coefficients. Using 
these polynomials, we obtain Table 4.2. 

TABLE 4.2 

Performance of the Stieltjes algorithm and the modified 
Chebyshev algorithms for co given by (4.1) 

modCheb 
11 Ui 12 U2 St. Ch. lU.(P )I U.(P'2) 

-1.0 -0.1 0.2 1.0 >50 27 >50 >50 
-1.0 -0.4 0.6 1.0 >50 8 >50 42 
-1.0 -0.8 0.9 1.0 >50 4 11 37 
-1.0 0.8 0.9 1.0 >50 46 >50 >50 

Now the performance of modChebUpdate is indeed better, but in general not 
as good as Stieltjes. 
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TABLE 4.3 

Performance of the Stieltjes algorithm and the modified 
Chebyshev algorithms for co given by (4.3) 

modCheb 
G11. U.(Ln) U.(Pu') U.(P$.2) 

-1.0 -0.1 0.2 1.0 24 27 25 27 27 
-1.0 -0.4 0.6 1.0 6 8 7 9 9 
-1.0 -0.8 0.9 1.0 2 3 4 3 3 
-1.0 0.8 0.9 1.0 34 35 36 38 38 

The next computations are based on a different representation of co. For 
11 < ul < 12 < u2 we have 

(4.3) cow(X) = I U ](x) + u U21(x) = Z ,U2](X) - ,, 11(X). 

Using the second representation (4.3) of co we obtain Table 4.3. 
As one might expect, here all algorithms tend to be unstable. It seems that 

this approach is only of academic interest. 

Example 4.2. Let cl := (11 + u1)/2 and d, := (u, - 1l)/2. Define the weight 
functions co, (x) [di - (x - cU)2]112Z11 a ](x), w2(x) := ,Ua](x), and 

(4.4) W(X) = w)1 (X) + 02 (X). 

p(l) is now a suitably scaled Chebyshev polynomial of the first kind. Although 
ton and cw2 have a "different nature", the algorithms have the same qualitative 
behavior as in Example 4.1, see Table 4.4; compare also Gautschi [4, Example 
4.9]. 

TABLE 4.4 

Performance of the Stieltjes algorithm and the modified 
Chebyshev algorithms for co given by (4.4) 

modCheb 

11 ul 12 U2 St. Ch. U.(Ln) U.(PUl ) U.(P'2 ) 
-1.0 -0.1 0.2 1.0 >50 34 25 >50 >50 
-1.0 -0.4 0.6 1.0 >50 7 9 >50 31 
-1.0 -0.8 0.9 1.0 >50 4 3 27 5 
-1.0 0.8 0.9 1.0 >50 >50 >50 >50 >50 
-1.0 -0.3 -0.3 1.0 >50 >50 >50 - - 

-1.0 -0.3 -0.5 1.0 >50 >50 >50 

-1.0 0.5 -0.7 1.0 >50 >50 >50 _ _ 
-1.0 1.0 0.8 0.9 >50 >50 >50 _ 
-1.0 1.0 -0.7 0.5 >50 >50 >50 _ 
-1.0 1.0 -1.0 0.8 >50 >50 >50 _ 
-1.0 1.0 -1.0 1.0 >50 >50 >50 _ _ 
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Example 4.3. Let ci := (li + ui)/2, di := (ui - li)/2, and oi(x): 
[d 2_(X_ c 2] 1/2tl a ](x) , i = 1, 2. The polynomials Vti that are orthogonal 
in [li, U1] U [12, u2] with respect to the weight function 

(4.5) @(x) = w)1 (x) + co2 (X) 

were studied by Saad [17], for 11 < < 12 < u2, in connection with the 
solution of indefinite linear systems. He derived a method for computing these 
polynomials by exploiting properties of Chebyshev polynomials. 

Note that the orthogonal polynomials y/, are also of interest in Gaussian 
quadrature. Here, one has now the possibility to deal in a closed form with 
functions having a singularity in the interior of a given interval [1, u], e.g., 

=11 <U1 =-l <u2U. 

Again, the Stieltjes algorithm as well as the modified Chebyshev algorithms 
behave as in the previous examples; cf. Table 4.5. 

TABLE 4.5 

Performance of the Stieltjes algorithm and the modified 
Chebyshev algorithms for co given by (4.5) 

modCheb 
11 ul 12 U2 St. Ch. U.(Ln) U.(Pn u) U.(P'2 ) 

-1.0 -0.1 0.2 1.0 >50 35 29 >50 >50 
-1.0 -0.4 0.6 1.0 >50 8 9 >50 >50 
-1.0 -0.8 0.9 1.0 >50 4 4 15 7 
-1.0 0.8 0.9 1.0 >50 >50 >50 >50 >50 
-1.0 -0.3 -0.3 1.0 >50 >50 >50 - - 

-1.0 -0.3 -0.5 1.0 >50 >50 >50 - - 

-1.0 0.5 -0.7 1.0 >50 >50 >50 - - 
-1.0 1.0 0.8 0.9 >50 >50 >50 - - 

-1.0 1.0 -0.7 0.5 >50 >50 >50 - - 

-1.0 1.0 -1.0 0.8 >50 >50 >50 - - 

-1.0 1.0 -1.0 1.0 >50 >50 >50 - _ 

Example 4.4. In this example we consider the weight function co(x) co"l (x)+ 
co'2(x), where co" and to'2 are defined by (4.2). We have 

(4.6) 
(4.6) = 2/(11- jx-(ul1- 1/2j - X) for x E [11, u] U [12, u2] 

( otherwise. 

The symmetric case l1 = -u2 and u1 = -12 is of interest in the diatomic 
linear chain (Wheeler [21]). This special case has been studied also by Gautschi 
[6]. He computed the three-term recurrence coefficients in closed form. 

However, for the general case we obtain Table 4.6. 
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TABLE 4.6 

Performance of the Stieltjes algorithm and the modified 
Chebyshev algorithms for wo given by (4.6) 

mnodCheb 
11 U, 12 U2 St. Ch. U.(Ln) U.(Pu') U.(P2 ) 

-4.0 -0.1 0.2 1.0 >50 _35I?I I 33 >50 >50 
-1.0 -0.4 0.6 1.0 >50 lo J f9 >50 >50 
-1.0 -0.8 0.9 1.0 11 4 4 11 11 
-1.0 0.8 0.9 1.0 >50 >50 >50 

As long as the gap between the two intervals is not too big, the Stieltjes 
algorithm and the modified Chebyshev algorithm based on the orthogonal poly- 
nomials with respect to coUl and co'12 perform very well. 

Example 4.5. Let 

(4.7) c)(x) : wI (x) + )2(x) = 1 for x E [- 1.0, -0.4] U [0.6, 1.0], 
{0 otherwise. 

Figure 4.7 shows the corresponding orthonormal polynomials of degree 2 (dot- 
ted curve), 3 (continuous curve), 4 (dashed curve), and 5 (dash-dotted curve). 

101~ 

8- 

6 - 

-1 -0.8 -0.6 04 02 0 0.2 04 06 08 1 

FIGURE 4.7 
Orthonormal polynomials of degree 2, 3, 4, 5 with 

respect to co given by (4.7) 
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Here, the orthonormal polynomial of degree 3 has a zero in the gap [-0.4, 
0.6]. However, it is easy to show that orthogonal polynomials on two disjoint 
intervals have at most one zero in the gap (see, e.g., Szego [19, p. 50]). 

CONCLUSIONS 

The Stieltjes algorithm seems to be the method of choice for generating or- 
thogonal polynomials over several intervals in the circumstances considered 
here. It is stable in almost every case and, unlike in the usual situation, the 
computation of the inner products is relatively simple. But, if the map from 
the modified moments to the recurrence coefficients is well-conditioned, one 
can also choose one of the algorithms based on modified moments. They are 
in particular attractive when the required modified moments are known analyt- 
ically. In this case the complexity of these algorithms does not depend on the 
number of underlying intervals. 

The Stieltjes algorithm as well as the algorithm for computing the modified 
moments is straightforward to parallelize. 
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